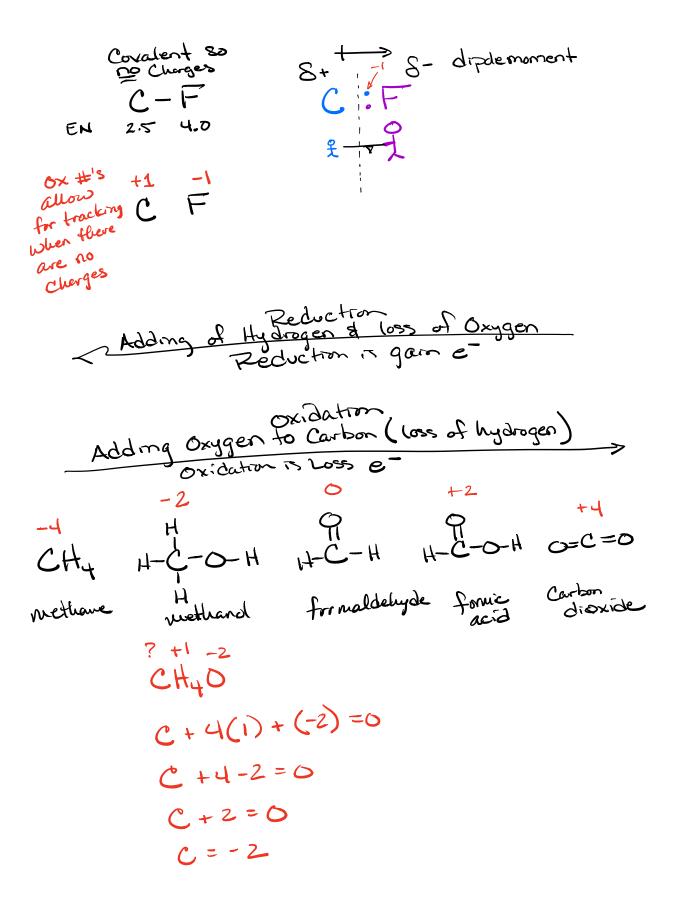
Reduction - gain hydrogen or loss of oxygen

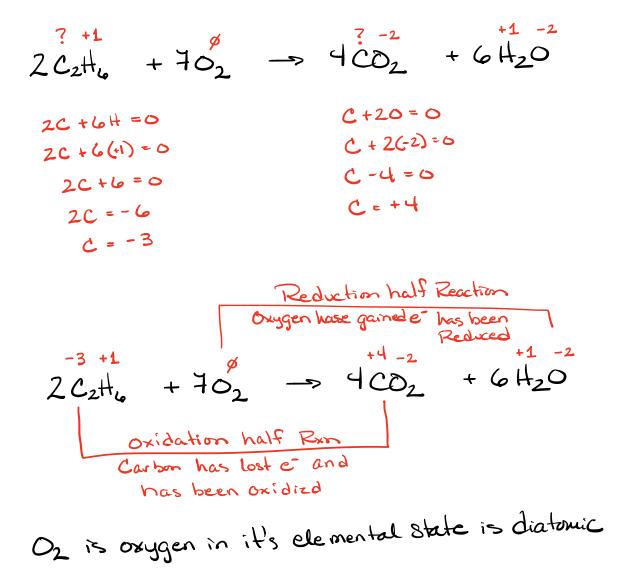
$$E_X$$
 Reduction
 $CH_Y + 2O_2 \rightarrow CO_2 + 2H_2O$

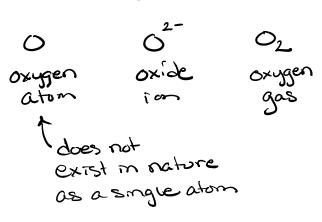
$$\frac{\mathcal{E}x}{CF_{4}} = \begin{pmatrix} C + 4F = \emptyset \\ CF_{4} \end{pmatrix} + \begin{pmatrix} C + 4F = \emptyset \\ CF_{4} \end{pmatrix} + \begin{pmatrix} C + 4(-1) = \emptyset \\ CF_{4} \end{pmatrix} + \begin{pmatrix} CF_{4}$$

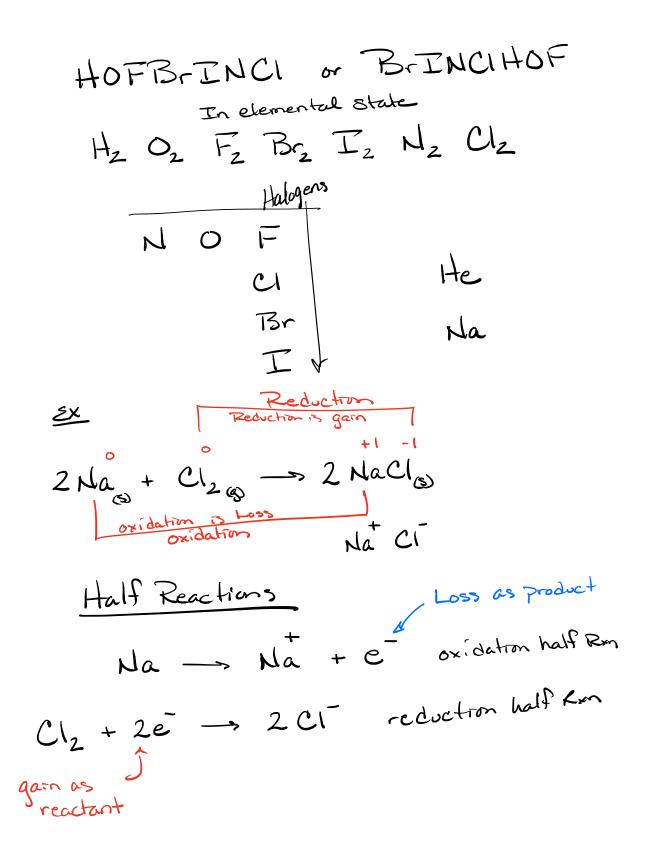
? +1
CHy
$$C + 4H = 0$$
 $-4 + 1$
 $C + 4(+1) = 0$ CH_4
 $C + 4 = 0$
 $C = -4$
+1 $a^{0x \pm}$
Na $rot Na$ Na state

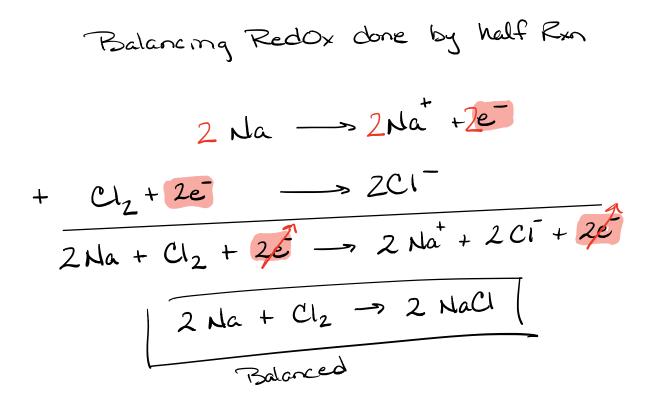

Redox Rxns
- Combustion
$$CHO + O_2 \rightarrow CO_2 + H_2O$$

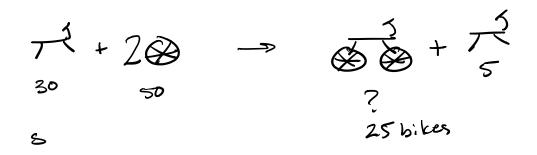
x y z \downarrow

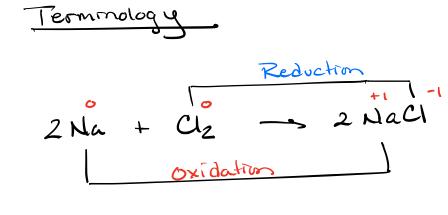

- Single Replacement

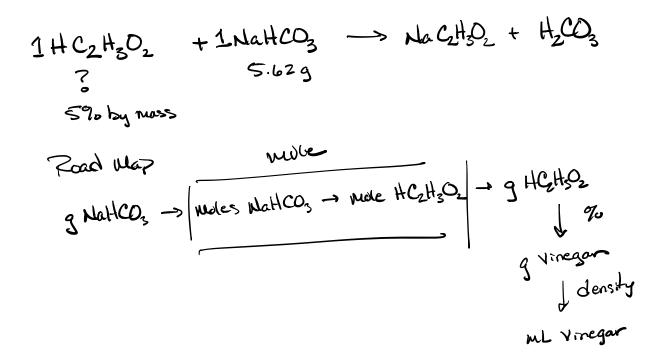

$$Zn + 2HCI \rightarrow ZnCl_2 + H_2$$

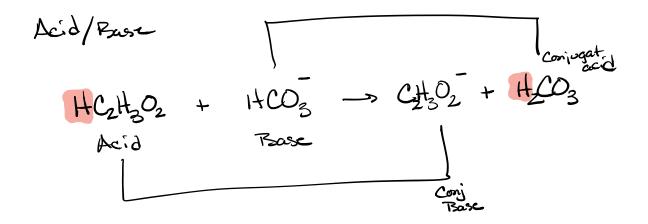

Polyatomic Example
? -2
3 - 2 Charge State


$$P_{4} = -3^{4}$$
 Charge State
 $P_{4} = -3^{4}$ Charge State
 $P_{4} = -3^{4}$ Charge State
 $P_{4} = -3$
 $P_{5} = -2$
 $S_{5} = -2$
 $S = +6$
Molecule (covalent)
 $m_{5} = -2$
 $m_{5} = -2$






Species being oxidized Na metal Species being reduced Clz gas Oxidizing Agent (reagent) Clz gas The species causing the sodium to be oxidized Redusing Agent (reagent) Na metal The species causing the Clz to be reduced


#

Acid/Buse

$$HC_2H_3O_2$$
 + NaHCO3 \rightarrow NaC2HO2 + H2CO3
acetic sodium
acid bicarbonate
Ninegar is Baking Soda
S90 by mass
acetic acid
 H_2CO_3 \rightarrow H_2O_4 + CO_2 (p) but
decomposition

$$2(+1) + C + 3(-2) = 0$$

 $2 + C - 6 = 0$
 $C - 4 = 0$
 $C = + 4$

